Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
J Cell Sci ; 136(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37334742

RESUMO

Cisplatin is an effective platinum-based chemotherapeutic with several side effects, including ototoxicity. Cochlear cells have low rates of proliferation yet are highly susceptible to cisplatin. We hypothesised that cisplatin ototoxicity might be caused by cisplatin-protein interactions rather than cisplatin-DNA interactions. Two known cisplatin-binding proteins are involved in the stress granule (SG) response. SGs are a pro-survival mechanism involving formation of transient ribonucleoprotein complexes during stress. We examined the effects of cisplatin on SG dynamics and composition in cell lines derived from the cochlea and retinal pigment epithelium. Cisplatin-induced SGs are significantly diminished in size and quantity compared to arsenite-induced SGs and are persistent after 24 h recovery. Additionally, cisplatin pre-treated cells were unable to form a typical SG response to subsequent arsenite stress. Cisplatin-induced SGs had significant reductions in the sequestration of eIF4G and the proteins RACK1 and DDX3X. Live-cell imaging of Texas Red-conjugated cisplatin revealed its localisation to SGs and retention for at least 24 h. We show cisplatin-induced SGs have impaired assembly, altered composition and are persistent, providing evidence of an alternate mechanism for cisplatin-induced ototoxicity via an impaired SG response.


Assuntos
Arsenitos , Ototoxicidade , Humanos , Cisplatino/farmacologia , Arsenitos/toxicidade , Arsenitos/metabolismo , Ototoxicidade/metabolismo , Grânulos de Estresse , Grânulos Citoplasmáticos/metabolismo
2.
Sci Data ; 10(1): 327, 2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236921

RESUMO

The Checklist of the Vascular Plants of the Republic of Guinea (CVPRG) is a specimen-based, expert-validated knowledge product, which provides a concise synthesis and overview of current knowledge on 3901 vascular plant species documented from Guinea (Conakry), West Africa, including their accepted names and synonyms, as well as their distribution and status within Guinea (indigenous or introduced, endemic or not). The CVPRG is generated automatically from the Guinea Collections Database and the Guinea Names Backbone Database, both developed and maintained at the Royal Botanic Gardens, Kew, in collaboration with the staff of the National Herbarium of Guinea. A total of 3505 indigenous vascular plant species are reported of which 3328 are flowering plants (angiosperms); this represents a 26% increase in known indigenous angiosperms since the last floristic overview. Intended as a reference for scientists documenting the diversity and distribution of the Guinea flora, the CVPRG will also inform those seeking to safeguard the rich plant diversity of Guinea and the societal, ecological and economic benefits accruing from these biological resources.


Assuntos
Magnoliopsida , Traqueófitas , Guiné , Plantas
3.
medRxiv ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38196618

RESUMO

To discover rare disease-gene associations, we developed a gene burden analytical framework and applied it to rare, protein-coding variants from whole genome sequencing of 35,008 cases with rare diseases and their family members recruited to the 100,000 Genomes Project (100KGP). Following in silico triaging of the results, 88 novel associations were identified including 38 with existing experimental evidence. We have published the confirmation of one of these associations, hereditary ataxia with UCHL1 , and independent confirmatory evidence has recently been published for four more. We highlight a further seven compelling associations: hypertrophic cardiomyopathy with DYSF and SLC4A3 where both genes show high/specific heart expression and existing associations to skeletal dystrophies or short QT syndrome respectively; monogenic diabetes with UNC13A with a known role in the regulation of ß cells and a mouse model with impaired glucose tolerance; epilepsy with KCNQ1 where a mouse model shows seizures and the existing long QT syndrome association may be linked; early onset Parkinson's disease with RYR1 with existing links to tremor pathophysiology and a mouse model with neurological phenotypes; anterior segment ocular abnormalities associated with POMK showing expression in corneal cells and with a zebrafish model with developmental ocular abnormalities; and cystic kidney disease with COL4A3 showing high renal expression and prior evidence for a digenic or modifying role in renal disease. Confirmation of all 88 associations would lead to potential diagnoses in 456 molecularly undiagnosed cases within the 100KGP, as well as other rare disease patients worldwide, highlighting the clinical impact of a large-scale statistical approach to rare disease gene discovery.

4.
Hear Res ; 426: 108634, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36384053

RESUMO

Stress granules (SGs) are membrane-less cytosolic assemblies that form in response to stress (e.g., heat, oxidative stress, hypoxia, viral infection and UV). Composed of mRNA, RNA binding proteins and signalling proteins, SGs minimise stress-related damage and promote cell survival. Recent research has shown that the stress granule response is vital to the cochlea's response to stress. However, emerging evidence suggests stress granule dysfunction plays a key role in the pathophysiology of multiple neurodegenerative diseases, several of which present with hearing loss as a symptom. Hearing loss has been identified as the largest potentially modifiable risk factor for dementia. The underlying reason for the link between hearing loss and dementia remains to be established. However, several possible mechanisms have been proposed including a common pathological mechanism. Here we will review the role of SGs in the pathophysiology of neurodegenerative diseases and explore possible links and emerging evidence that they may play an important role in maintenance of hearing and may be a common mechanism underlying age-related hearing loss and dementia.


Assuntos
Surdez , Demência , Doenças Neurodegenerativas , Presbiacusia , Humanos , Grânulos de Estresse
5.
Sci Rep ; 12(1): 2444, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165318

RESUMO

Cell cycle associated protein 1 (Caprin1) is an RNA-binding protein that can regulate the cellular post-transcriptional response to stress. It is a component of both stress granules and neuronal RNA granules and is implicated in neurodegenerative disease, synaptic plasticity and long-term memory formation. Our previous work suggested that Caprin1 also plays a role in the response of the cochlea to stress. Here, targeted inner ear-deletion of Caprin1 in mice leads to an early onset, progressive hearing loss. Auditory brainstem responses from Caprin1-deficient mice show reduced thresholds, with a significant reduction in wave-I amplitudes compared to wildtype. Whilst hair cell structure and numbers were normal, the inner hair cell-spiral ganglion neuron (IHC-SGN) synapse revealed abnormally large post-synaptic GluA2 receptor puncta, a defect consistent with the observed wave-I reduction. Unlike wildtype mice, mild-noise-induced hearing threshold shifts in Caprin1-deficient mice did not recover. Oxidative stress triggered TIA-1/HuR-positive stress granule formation in ex-vivo cochlear explants from Caprin1-deficient mice, showing that stress granules could still be induced. Taken together, these findings suggest that Caprin1 plays a key role in maintenance of auditory function, where it regulates the normal status of the IHC-SGN synapse.


Assuntos
Proteínas de Ciclo Celular/genética , Deleção de Genes , Perda Auditiva Provocada por Ruído/genética , Ruído/efeitos adversos , Proteínas de Ligação a RNA/genética , Animais , Limiar Auditivo , Proteínas de Ciclo Celular/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Feminino , Genótipo , Células Ciliadas Auditivas Internas/metabolismo , Audição/genética , Perda Auditiva Provocada por Ruído/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/genética , Gânglio Espiral da Cóclea/metabolismo , Sinapses/metabolismo
7.
Neuroimage Clin ; 32: 102823, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34624637

RESUMO

PURPOSE: Hearing loss (HL) is one of the most common age-related diseases. Here, we investigate the central auditory correlates of HL in people with normal cognition and mild cognitive impairment (MCI) and test their association with genetic markers with the aim of revealing pathogenic mechanisms. METHODS: Brain glucose metabolism based on FDG-PET, self-reported HL status, and genetic data were obtained from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. FDG-PET data was analysed from 742 control subjects (non-HL with normal cognition or MCI) and 162 cases (HL with normal cognition or MCI) with age ranges of 72.2 ± 7.1 and 77.4 ± 6.4, respectively. Voxel-wise statistics of FDG uptake differences between cases and controls were computed using the generalised linear model in SPM12. An additional 1515 FDG-PET scans of 618 participants were analysed using linear mixed effect models to assess longitudinal HL effects. Furthermore, a quantitative trait genome-wide association study (GWAS) was conducted on the glucose uptake within regions of interest (ROIs), which were defined by the voxel-wise comparison, using genotyping data with 5,082,878 variants available for HL cases and HL controls (N = 817). RESULTS: The HL group exhibited hypometabolism in the bilateral Heschl's gyrus (kleft = 323; kright = 151; Tleft = 4.55; Tright = 4.14; peak Puncorr < 0.001), the inferior colliculus (k = 219;T = 3.53; peak Puncorr < 0.001) and cochlear nucleus (k = 18;T = 3.55; peak Puncorr < 0.001) after age correction and using a cluster forming height threshold P < 0.005 (FWE-uncorrected). Moreover, in an age-matched subset, the cluster comprising the left Heschl's gyrus survived the FWE-correction (kleft = 1903; Tleft = 4.39; cluster PFWE-corr = 0.001). The quantitative trait GWAS identified no genome-wide significant locus in the three HL ROIs. However, various loci were associated at the suggestive threshold (p < 1e-05). CONCLUSION: Compared to the non-HL group, glucose metabolism in the HL group was lower in the auditory cortex, the inferior colliculus, and the cochlear nucleus although the effect sizes were small. The GWAS identified candidate genes that might influence FDG uptake in these regions. However, the specific biological pathway(s) underlying the role of these genes in FDG-hypometabolism in the auditory pathway requires further investigation.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Vias Auditivas/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/genética , Fluordesoxiglucose F18 , Estudo de Associação Genômica Ampla , Glucose , Humanos , Neuroimagem , Tomografia por Emissão de Pósitrons
8.
Sci Rep ; 11(1): 19368, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34588543

RESUMO

The mammalian inner ear has a limited capacity to regenerate its mechanosensory hair cells. This lack of regenerative capacity underlies the high incidence of age-related hearing loss in humans. In contrast, non-mammalian vertebrates can form new hair cells when damage occurs, a mechanism that depends on re-activation of expression of the pro-hair cell transcription factor Atoh1. Here, we show that members of the E2F transcription factor family, known to play a key role in cell cycle progression, regulate the expression of Atoh1. E2F1 activates chicken Atoh1 by directly interacting with a cis-regulatory region distal to the avian Atoh1 gene. E2F does not activate mouse Atoh1 gene expression, since this regulatory element is absent in mammals. We also show that E2F1 expression changes dynamically in the chicken auditory epithelium during ototoxic damage and hair cell regeneration. Therefore, we propose a model in which the mitotic regeneration of non-mammalian hair cells is due to E2F1-mediated activation of Atoh1 expression, a mechanism which has been lost in mammals.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fator de Transcrição E2F1/metabolismo , Células Ciliadas Auditivas/fisiologia , Regeneração , Animais , Linhagem Celular , Embrião de Galinha , Regulação da Expressão Gênica , Camundongos
9.
NPJ Aging Mech Dis ; 7(1): 17, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34294723

RESUMO

Age-related hearing loss was recently established as the largest modifiable risk factor for Alzheimer's disease (AD), however, the reasons for this link remain unclear. We investigate shared underlying genetic associations using results from recent large genome-wide association studies (GWAS) on adult hearing difficulty and AD. Genetic correlation and Mendelian randomization (MR) analysis do not support a genetic correlation between the disorders, but suggest a direct causal link from AD genetic risk to hearing difficulty, driven by APOE. Systematic MR analyses on the effect of other traits revealed shared effects of glutamine, gamma-glutamylglutamine, and citrate levels on reduced risk of both hearing difficulty and AD. In addition, pathway analysis on GWAS risk variants suggests shared function in neuronal signalling pathways as well as etiology of diabetes and cardiovascular disease. However, after multiple testing corrections, neither analysis led to statistically significant associations. Altogether, our genetic-driven analysis suggests hearing difficulty and AD are linked by a shared vulnerability in molecular pathways rather than by a shared genetic architecture.

10.
Sci Rep ; 11(1): 6470, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33742053

RESUMO

Tinnitus is a prevalent condition in which perception of sound occurs without an external stimulus. It is often associated with pre-existing hearing loss or noise-induced damage to the auditory system. In some individuals it occurs frequently or even continuously and leads to considerable distress and difficulty sleeping. There is little knowledge of the molecular mechanisms involved in tinnitus which has hindered the development of treatments. Evidence suggests that tinnitus has a heritable component although previous genetic studies have not established specific risk factors. From a total of 172,608 UK Biobank participants who answered questions on tinnitus we performed a case-control genome-wide association study for self-reported tinnitus. Final sample size used in association analysis was N = 91,424. Three variants in close proximity to the RCOR1 gene reached genome wide significance: rs4906228 (p = 1.7E-08), rs4900545 (p = 1.8E-08) and 14:103042287_CT_C (p = 3.50E-08). RCOR1 encodes REST Corepressor 1, a component of a co-repressor complex involved in repressing neuronal gene expression in non-neuronal cells. Eleven other independent genetic loci reached a suggestive significance threshold of p < 1E-06.


Assuntos
Proteínas Correpressoras/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Zumbido/genética , Feminino , Humanos , Masculino , Fenótipo , Zumbido/patologia
11.
Nature ; 584(7822): 579-583, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32760001

RESUMO

New Guinea is the world's largest tropical island and has fascinated naturalists for centuries1,2. Home to some of the best-preserved ecosystems on the planet3 and to intact ecological gradients-from mangroves to tropical alpine grasslands-that are unmatched in the Asia-Pacific region4,5, it is a globally recognized centre of biological and cultural diversity6,7. So far, however, there has been no attempt to critically catalogue the entire vascular plant diversity of New Guinea. Here we present the first, to our knowledge, expert-verified checklist of the vascular plants of mainland New Guinea and surrounding islands. Our publicly available checklist includes 13,634 species (68% endemic), 1,742 genera and 264 families-suggesting that New Guinea is the most floristically diverse island in the world. Expert knowledge is essential for building checklists in the digital era: reliance on online taxonomic resources alone would have inflated species counts by 22%. Species discovery shows no sign of levelling off, and we discuss steps to accelerate botanical research in the 'Last Unknown'8.


Assuntos
Biodiversidade , Classificação/métodos , Ilhas , Plantas/classificação , Mapeamento Geográfico , História do Século XVIII , História do Século XIX , História do Século XX , História do Século XXI , Internet , Nova Guiné , Especificidade da Espécie , Fatores de Tempo
12.
Eur J Hum Genet ; 28(8): 1056-1065, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32203203

RESUMO

Age-related hearing impairment (ARHI) is very common in older adults and has major impact on quality of life. The heritability of ARHI has been estimated to be around 50%. The present study aimed to estimate heritability and environmental contributions to liability of ARHI and the extent to which a polygenic risk score (PRS) derived from a recent genome-wide association study of questionnaire items regarding hearing loss using the UK Biobank is predictive of hearing loss in other samples. We examined (1) a sample from TwinsUK who have had hearing ability measured by pure-tone audiogram and the speech-to-noise ratio test as well as questionnaire measures that are comparable with the UK Biobank questionnaire items and (2) European and non-European samples from the UK Biobank which were not part of the original GWAS. Results indicated that the questionnaire items were over 50% heritable in TwinsUK and comparable with the objective hearing measures. In addition, we found very high genetic correlation (0.30-0.84) between the questionnaire responses and objective hearing measures in the TwinsUK sample. Finally, PRS computed from weighted UK Biobank GWAS results were predictive of both questionnaire and objective measures of hearing loss in the TwinsUK sample, as well as questionnaire-measured hearing loss in Europeans but not non-European subpopulations. These results demonstrate the utility of questionnaire-based methods in genetic association studies of hearing loss in adults and highlight the differences in genetic predisposition to ARHI by ethnic background.


Assuntos
Estudo de Associação Genômica Ampla/métodos , Herança Multifatorial , Presbiacusia/genética , Locos de Características Quantitativas , Autorrelato , Idoso , Idoso de 80 Anos ou mais , Bases de Dados Genéticas , Humanos , Presbiacusia/diagnóstico , Gêmeos Dizigóticos/genética , Gêmeos Monozigóticos/genética , Reino Unido
13.
Am J Hum Genet ; 105(4): 788-802, 2019 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-31564434

RESUMO

Age-related hearing impairment (ARHI) is the most common sensory impairment in the aging population; a third of individuals are affected by disabling hearing loss by the age of 65. It causes social isolation and depression and has recently been identified as a risk factor for dementia. The genetic risk factors and underlying pathology of ARHI are largely unknown, meaning that targets for new therapies remain elusive, yet heritability estimates range between 35% and 55%. We performed genome-wide association studies (GWASs) for two self-reported hearing phenotypes, using more than 250,000 UK Biobank (UKBB) volunteers aged between 40 and 69 years. Forty-four independent genome-wide significant loci (p < 5E-08) were identified, considerably increasing the number of established trait loci. Thirty-four loci are novel associations with hearing loss of any form, and only one of the ten known hearing loci has a previously reported association with an ARHI-related trait. Gene sets from these loci are enriched in auditory processes such as synaptic activities, nervous system processes, inner ear morphology, and cognition, while genetic correlation analysis revealed strong positive correlations with multiple personality and psychological traits for the first time. Immunohistochemistry for protein localization in adult mouse cochlea implicate metabolic, sensory, and neuronal functions for NID2, CLRN2, and ARHGEF28. These results provide insight into the genetic landscape underlying ARHI, opening up novel therapeutic targets for further investigation. In a wider context, our study also highlights the viability of using self-report phenotypes for genetic discovery in very large samples when deep phenotyping is unavailable.


Assuntos
Bancos de Espécimes Biológicos , Estudo de Associação Genômica Ampla , Transtornos da Audição/genética , Adulto , Idoso , Animais , Predisposição Genética para Doença , Humanos , Desequilíbrio de Ligação , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Reino Unido
14.
EMBO Mol Med ; 11(9): e10288, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31448880

RESUMO

Hearing relies on mechanically gated ion channels present in the actin-rich stereocilia bundles at the apical surface of cochlear hair cells. Our knowledge of the mechanisms underlying the formation and maintenance of the sound-receptive structure is limited. Utilizing a large-scale forward genetic screen in mice, genome mapping and gene complementation tests, we identified Clrn2 as a new deafness gene. The Clrn2clarinet/clarinet mice (p.Trp4* mutation) exhibit a progressive, early-onset hearing loss, with no overt retinal deficits. Utilizing data from the UK Biobank study, we could show that CLRN2 is involved in human non-syndromic progressive hearing loss. Our in-depth morphological, molecular and functional investigations establish that while it is not required for initial formation of cochlear sensory hair cell stereocilia bundles, clarin-2 is critical for maintaining normal bundle integrity and functioning. In the differentiating hair bundles, lack of clarin-2 leads to loss of mechano-electrical transduction, followed by selective progressive loss of the transducing stereocilia. Together, our findings demonstrate a key role for clarin-2 in mammalian hearing, providing insights into the interplay between mechano-electrical transduction and stereocilia maintenance.


Assuntos
Perda Auditiva/metabolismo , Estereocílios/metabolismo , Adulto , Idoso , Animais , Estudos de Coortes , Feminino , Células Ciliadas Auditivas/metabolismo , Audição , Perda Auditiva/genética , Perda Auditiva/fisiopatologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Estereocílios/genética
15.
Sci Rep ; 9(1): 12501, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467369

RESUMO

Stress granules regulate RNA translation during cellular stress, a mechanism that is generally presumed to be protective, since stress granule dysregulation caused by mutation or ageing is associated with neurodegenerative disease. Here, we investigate whether pharmacological manipulation of the stress granule pathway in the auditory organ, the cochlea, affects the survival of sensory hair cells during aminoglycoside ototoxicity, a common cause of acquired hearing loss. We show that hydroxamate (-)-9, a silvestrol analogue that inhibits eIF4A, induces stress granule formation in both an auditory cell line and ex-vivo cochlear cultures and that it prevents ototoxin-induced hair-cell death. In contrast, preventing stress granule formation using the small molecule inhibitor ISRIB increases hair-cell death. Furthermore, we provide the first evidence of stress granule formation in mammalian hair cells in-vivo triggered by aminoglycoside treatment. Our results demonstrate that pharmacological induction of stress granules enhances cell survival in native-tissue, in a clinically-relevant context. This establishes stress granules as a viable therapeutic target not only for hearing loss but also other neurodegenerative diseases.


Assuntos
Aminoglicosídeos/toxicidade , Cóclea/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos dos fármacos , Perda Auditiva/fisiopatologia , Doenças Neurodegenerativas/fisiopatologia , Animais , Cóclea/metabolismo , Cóclea/fisiopatologia , Fator de Iniciação 4F em Eucariotos/genética , Fator de Iniciação 4F em Eucariotos/metabolismo , Células Ciliadas Auditivas/fisiologia , Perda Auditiva/etiologia , Perda Auditiva/genética , Perda Auditiva/metabolismo , Humanos , Camundongos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo , Ototoxicidade , Estresse Fisiológico/efeitos dos fármacos
16.
PLoS Biol ; 17(4): e3000194, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30973865

RESUMO

Adult-onset hearing loss is very common, but we know little about the underlying molecular pathogenesis impeding the development of therapies. We took a genetic approach to identify new molecules involved in hearing loss by screening a large cohort of newly generated mouse mutants using a sensitive electrophysiological test, the auditory brainstem response (ABR). We review here the findings from this screen. Thirty-eight unexpected genes associated with raised thresholds were detected from our unbiased sample of 1,211 genes tested, suggesting extreme genetic heterogeneity. A wide range of auditory pathophysiologies was found, and some mutant lines showed normal development followed by deterioration of responses, revealing new molecular pathways involved in progressive hearing loss. Several of the genes were associated with the range of hearing thresholds in the human population and one, SPNS2, was involved in childhood deafness. The new pathways required for maintenance of hearing discovered by this screen present new therapeutic opportunities.


Assuntos
Percepção Auditiva/genética , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Perda Auditiva/genética , Estimulação Acústica/métodos , Adulto , Animais , Proteínas de Transporte de Ânions/genética , Criança , Fenômenos Eletrofisiológicos/genética , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Estudos de Associação Genética , Audição/genética , Perda Auditiva/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL
17.
Otol Neurotol ; 40(1): 22-30, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30540696

RESUMO

OBJECTIVE: To analyse the epidemiology of otosclerosis in a British cohort collected between 2011 and 2017. DESIGN: Retrospective cohort study. SETTING: Five UK ENT Departments. PATIENTS: Patients with surgically confirmed otosclerosis. MAIN OUTCOME MEASURES: Questionnaire data documented family history of otosclerosis, age of onset, medical history, and information on associated risk factors for 657 patients. Pre and post-surgical pure-tone audiometry was collected for 154 of these patients. RESULTS: The age of onset, incidence of bilateral disease, tinnitus and vertigo, a higher prevalence of women (65%) than men (35%) are similar to those reported previously for otosclerosis cohorts. No association with measles infection was detected. Patients with a family history (40%) have an earlier age of onset and a higher incidence of bilateral disease and vertigo than non-familial subjects. Pedigree analysis is consistent with an autosomal dominant inheritance with reduced penetrance being apparent in 44/91 pedigrees studied. Women who associate their hearing loss with pregnancy have an earlier age of onset than those that do not (p = 6 × 10). CONCLUSIONS: This study confirms that otosclerosis is an early adult onset disease that is more prevalent in women than men with a large minority of patients having a family history of otosclerosis. We report new evidence to support a relationship between pregnancy and otosclerosis progression in a proportion of women. In addition, this is the first study to identify differences in severity between familial and non-familial cases of otosclerosis, highlighting the possibility that more than one etiology may be involved.


Assuntos
Otosclerose/epidemiologia , Adolescente , Adulto , Idade de Início , Audiometria de Tons Puros , Criança , Progressão da Doença , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Otosclerose/cirurgia , Prevalência , Estudos Retrospectivos , Fatores de Risco , Fatores Sexuais , Inquéritos e Questionários , Reino Unido/epidemiologia , Adulto Jovem
18.
Artigo em Inglês | MEDLINE | ID: mdl-30291149

RESUMO

Age-related hearing loss (ARHL) is the most prevalent sensory deficit in the elderly. This progressive hearing impairment leads to social isolation and is also associated with comorbidities, such as frailty, falls, and late-onset depression. Moreover, there is a growing evidence linking it with cognitive decline and increased risk of dementia. Given the large social and welfare burden that results from ARHL, and because ARHL is potentially a modifiable risk factor for dementia, there is an urgent need for therapeutic interventions to ameliorate age-related auditory decline. However, a prerequisite for design of therapies is knowledge of the underlying molecular mechanisms. Currently, our understanding of ARHL is very limited. Here, we review recent findings from research into ARHL from both human and animal studies and discuss future prospects for advances in our understanding of genetic susceptibility, pathology, and potential therapeutic approaches in ARHL.


Assuntos
Disfunção Cognitiva , Demência/epidemiologia , Presbiacusia/epidemiologia , Idoso , Animais , Comorbidade , Modelos Animais de Doenças , Humanos , Camundongos , Presbiacusia/genética , Presbiacusia/terapia , Fatores de Risco
19.
BMC Med Genomics ; 11(1): 77, 2018 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-30180840

RESUMO

BACKGROUND: Deafness is a highly heterogenous disorder with over 100 genes known to underlie human non-syndromic hearing impairment. However, many more remain undiscovered, particularly those involved in the most common form of deafness: adult-onset progressive hearing loss. Despite several genome-wide association studies of adult hearing status, it remains unclear whether the genetic architecture of this common sensory loss consists of multiple rare variants each with large effect size or many common susceptibility variants each with small to medium effects. As next generation sequencing is now being utilised in clinical diagnosis, our aim was to explore the viability of diagnosing the genetic cause of hearing loss using whole exome sequencing in individual subjects as in a clinical setting. METHODS: We performed exome sequencing of thirty patients selected for distinct phenotypic sub-types from well-characterised cohorts of 1479 people with adult-onset hearing loss. RESULTS: Every individual carried predicted pathogenic variants in at least ten deafness-associated genes; similar findings were obtained from an analysis of the 1000 Genomes Project data unselected for hearing status. We have identified putative causal variants in known deafness genes and several novel candidate genes, including NEDD4 and NEFH that were mutated in multiple individuals. CONCLUSIONS: The high frequency of predicted-pathogenic variants detected in known deafness-associated genes was unexpected and has significant implications for current diagnostic sequencing in deafness. Our findings suggest that in a clinic setting, efforts should be made to a) confirm key sequence results by Sanger sequencing, b) assess segregations of variants and phenotypes within the family if at all possible, and c) use caution in applying current pathogenicity prediction algorithms for diagnostic purposes. We conclude that there may be a high number of pathogenic variants affecting hearing in the ageing population, including many in known deafness-associated genes. Our findings of frequent predicted-pathogenic variants in both our hearing-impaired sample and in the larger 1000 Genomes Project sample unselected for auditory function suggests that the reference population for interpreting variants for this very common disorder should be a population of people with good hearing for their age rather than an unselected population.


Assuntos
Surdez/genética , Sequenciamento do Exoma , Variação Genética , Adulto , Idade de Início , Surdez/epidemiologia , Humanos , Mutação
20.
Hum Genet ; 137(5): 357-363, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29728750

RESUMO

Otosclerosis is a common form of hearing loss which typically presents in young adults. The disease has a familial, monogenic form and a non-familial form with a more complex aetiology. A previous genome wide association study identified evidence that variants within RELN are associated with the condition. Other genes in which an association has been reported include BMP2, COL1A1, FGF2, PPP2R5B and TGFB1. However, follow up studies have often failed to replicate initial positive results. The aim of this study was to establish if an association exists between eight single nucleotide polymorphisms (SNPs) in these six previously implicated genes and otosclerosis in a British case-control cohort (n = 748). Evidence of an association between rs1800472 in TGFB1 and otosclerosis was found (p = 0.034), this association was strongest amongst non-familial cases (p = 0.011). No evidence of an association was detected with variants in COL1A1, FGF2, BMP2, and PPP2R5B. No association between variation in RELN and otosclerosis was observed in the whole cohort. However, a significant association (p = 0.0057) was detected between one RELN SNP (rs39399) and otosclerosis in familial patients. Additionally, we identify expression of one RELN transcript in 51 of 81 human stapes tested, clarifying previous conflicting data as to whether RELN is expressed in the affected tissue. Our findings strengthen the association of TGFB1 (rs1800472) with otosclerosis and support a relationship between RELN and familial otosclerosis only, which may explain previous variable replications.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Proteínas da Matriz Extracelular/genética , Estudos de Associação Genética , Proteínas do Tecido Nervoso/genética , Otosclerose/genética , Serina Endopeptidases/genética , Fator de Crescimento Transformador beta1/genética , Proteína Morfogenética Óssea 2/genética , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Fator 2 de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica , Predisposição Genética para Doença , Genótipo , Humanos , Masculino , Proteínas de Membrana/genética , Otosclerose/fisiopatologia , Polimorfismo de Nucleotídeo Único/genética , Proteína Fosfatase 2/genética , Proteína Reelina , Reino Unido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...